Borough of Manhattan Community College Department of Mathematics

MAT 104 DEPARTMENTAL FINAL EXAM REVIEW

Directions: Show all work. You may not use a calculator on the actual exam.

PART I. ARITHMETIC REVIEW

1. Simplify: $\frac{0.08}{0.1} * \frac{2.1}{1}$
2. If you have medication tablets whose strength is 0.1 mg and you need to give 0.3 mg , you will need (select one):
a) 1 tab;
b) less than 1 tab;
c) more than 1 tab.
3. Clear decimals, reduce fractions, then calculate. Round your answer to the nearest whole number: $\frac{1}{0.02} \times \frac{0.4}{1.6}$
4. How many milligrams is $\frac{1}{3}$ of a 300 mg -tablet?

PART II. CONVERSIONS

1. Perform the following conversions.
a) 39 Lb 4 Oz \qquad kg ; round your answer to the nearest tenth;
b) 0.2 g
 mg;
c) 27 kg \qquad Lb ; round your answer to the nearest tenth;
d) 16 mcg \qquad mg;
e) 3 tbs \qquad mL ;
f) 75 mL \qquad Oz.
2. A nurse encouraged a client with diarrhea to drink 40 Oz of water per day. How many cups does this represent?
3. Convert 98.6 degrees Fahrenheit to Celsius.
4. A client weighs 99.2 kg . How many pounds does the client weigh? Round to the nearest tenth.
5. Convert 38.2 degrees Celsius to Fahrenheit.
6. An IV therapy started at 11:50 PM with an infusion time of 3 hr 30 min , what was the completion time in standard time?
7. If a client had IV therapy for 8 hours, ending at 1100 , when on the 24 -hour clock was the IV started?
8. A client had the following for lunch. Calculate client's fluid intake in mL .
$1 / 2$ cup of grape juice, 6 Oz of applesauce, $3 / 4 \mathrm{Lb}$ of fish sandwich, $11 / 2$ cups of water.

PART III. READING MEDICATION LABELS

1. Read the label, and identify the information requested:

Each mL contains hydromorphone hydrochloride 2 mg , edetate disodium 0.5 mg methylparaben 1.8 mg and propylparaben 0.2 mg in Water for Injection. pH 3.5-
5.5; sodium hydroxide and/or hydrochloric acid added, if needed, for pH adjustment.

Noc 0641-2341-41	
Bydromoiphorie HCI Injection, USP	Usual Dosage: See package ing information.
$40 \mathrm{mg} / 20 \mathrm{~mL}$ ($2 \mathrm{mg} / \mathrm{mL}$) FOR SUBCUTANEOUS, INTRAMUSCULAR OR SLOW INTRAVENOUS USE $20 \mathrm{~mL} \quad$ R only Multiple Dose Vial	
Manufactured by W west-ward Eatontow, No O724 USA	462-258022

Label (i)

a) Trade Name: \qquad
b) Generic Name: \qquad
c) Form:
d) Dosage strength: \qquad
e) Total in Container:

Label (ii)

a) Trade Name: \qquad
b) Generic Name: \qquad
c) Form:
d) Dosage strength: \qquad
e) Total Volume: \qquad

Label (iii)

a) Trade Name: \qquad
b) Generic Name: \qquad
c) Form: \qquad
d) Dosage strength: \qquad
e) Total Volume:
f) Directions for use \qquad

Label (iv)

a) Trade Name: \qquad
b) Generic Name: \qquad
c) Dosage strength: \qquad
d) Is it safe to store this medication in a freezer? Justify. \qquad
2. The medication with the label below is shipped in powdered form.

How much diluent is needed for reconstitution?

3. Using Corvert label, answer the following questions:
a) What is the total volume of the vial?
b) What is the dosage strength?
c) What is the route of administration?

PART IV. DOSAGE CALCULATIONS

1. Calculate the following dosage:

Order: Glucophage 0.5 g p.o. b.i.d.
Available:

2. Order: Xanax 500 mcg p.o. t.i.d. Available:

How many tablets will be need
ed for one dose?

Reonly	NDC 0009-0029-01
See package insert for complete product information.	
Keep container tightly closed.	Xanax
Dispense in tight, lightresistant container.	alprazolam tablets, USP
Store at controlled room temperature 20° to $25^{\circ} \mathrm{C}$ (68° to $77^{\circ} \mathrm{F}$) Isee USPI.	
Pharmacia \& Upjohn Company Kalamazoo, MI 49001, USA	100 Tablets

3. Order: Phenobarbital 90 mg p.o. at bedtime.

Available: Phenobarbital 15 mg tablets and 30 mg tablets.
a) Which strength tablet is best to administer?
b) How many tablets of which strength will you prepare to administer?
c) State why.
4. Order: Augmentin 0.25 g p.o. q8h

Available:

5. Order: Reglan 5 mg IM b.i.d. $\frac{1}{2}$ hour a.c.

Available:

6. Calculate the following dosage:

Order: Cefaclor 0.18 g p.o. $q 4 h$
Available: Cefaclor labeled 375 mg per 5 mL

7. Order: Penicillin G potassium 300,000 units IV q6h.

a) Which dosage strength would be appropriate to use?
b) How many milliliters of diluent will you add to receive the dosage strength in (a)?
c) How many milliliters will you administer?
d) Shade the dosage calculated on the syringe provided.

8. Order: Penicillin G potassium 700,000 units IV q6h.

a) Which dosage strength would be appropriate to use?
b) How many milliliters of diluent will you add to receive the dosage strength in (a)?
c) How many milliliters will you administer?
d) Shade the dosage calculated on the syringe provided.

9. Shade on the syringe:

Order: Novolin R U-100 41 units subcut subcut daily at 7:30 am.

10. Use the syringe calibrations provided to measure the dosage 22 units of regular insulin.

11. Prepare a 0.3 g dosage from medication labeled 900 mg per 6 mL . Show the amount of medication on the syringe.

12. According to the instructions on the Moderna Covid-19 mRNA vaccine, a health worker has to fill a syringe with 0.5 mL of the medicine. You have a 1 mL syringe. How many mL do you need to fill the syringe with?

13. Order: Potassium acetate 16 mEq for IV. Calculate the dosage in mL to the nearest hundredth. Shade the dosage on the syringe provided.

14. Order: Cyanocobalamin 800 mcg . Calculate the dosage in mL . Shade the dosage on the syringe provided.

15. Order: Biaxin 1 g p.o. daily. How many tablets do you give?

16. You are to administer 3 tablets with a dosage strength of 0.04 mg each. What is the total dosage you need to administer?
17. Order: $1 / 3$ - strength Ensure 1200 mL by NG tube over 8 hours. Calculate the amount of solute and solvent needed.

PART V. INTRAVENOUS (IV) CALCULATIONS

1. Use the label below to answer the following questions:

5\% Dextrose and

- 0.45% Sodium Chloride Injection USP
- 500 mL

a) What is the abbreviation for the given IV fluid?
b) Calculate the amount of dextrose in the given IV fluid.
c) Calculate the amount of sodium chloride in the given IV fluid.

2. Calculate the amount of dextrose and sodium chloride in 1000 mL of 5% dextrose and 0.9% normal saline.
3. Order: Lactated Ringer solution $1,000 \mathrm{~mL}$ to infuse at $80 \mathrm{~mL} / \mathrm{hr}$. The administration set delivers $15 \mathrm{gtt} / \mathrm{mL}$. At what rate in $\mathrm{gtt} / \mathrm{min}$ should the IV infuse?
4. An IV of 500 mL NS is to infuse at $60 \mathrm{~mL} / \mathrm{hr}$.
a) Determine the infusion time expressed in traditional time (12-hour clock). \qquad
b) The IV was started at 10: 00 PM. When would the IV infusion be completed? State time in (i) traditional (12-hour clock) and (ii) military (24-hour clock) time . \qquad
5. An IV of 500 mL of $0.9 \% \mathrm{NS}$ is to infuse in 6 hr at a rate of $14 \mathrm{gtt} / \mathrm{min}(14 \mathrm{macrogtt} / \mathrm{min})$. Drop factor: $10 \mathrm{gtt} / \mathrm{mL}$. The IV was started at 7 AM . You check the IV at 8 AM , and 200 mL has infused.
a) Recalculate the rate in $\mathrm{gtt} / \mathrm{min}$ for the remaining solution.
b) Determine the percentage of change.
c) State your course of action.
6. Order: 1 L of 0.9% NS with 40,000 units heparin over 24 hours. Calculate the following:
a) $\mathrm{mL} / \mathrm{hr}$
b) units $/ \mathrm{hr}$
7. A dosage of 40 mg in 4 mL is diluted $\underline{\text { to }} 50 \mathrm{~mL}$ and administered in 90 minutes. Determine: (a) the number of diluent to be added and (b) the flow rate in $\mathrm{mL} / \mathrm{hr}$ to set the pump.
8. A solution of 40,000 units in 1000 mL of heparin is to be used to infuse 1500 units $/ \mathrm{hr}$, calculate flow rate in $\mathrm{mL} / \mathrm{hr}$ of the heparin. Round your answer to a whole number.
9. A solution of 400 mg in 250 mL and to infuse at $45 \mathrm{~mL} / \mathrm{hr}$. Calculate (a) $\mathrm{mg} / \mathrm{hr}$ and (b)the $\mathrm{mcg} / \mathrm{min}$ to infuse.
10. An infusion of 250 mL is started at $12: 20 \mathrm{pm}$ to infuse at a rate of $20 \mathrm{~mL} / \mathrm{hr}$. Calculate (a) the infusion time and give the answer in hr and min ; (b) the completion time using a 24 -hour clock.
11. Administer 100 mL in 1 hr using a $15 \mathrm{gtt} / \mathrm{mL}$ set. Calculate the flow rate.
12. A client is to receive $1,800 \mathrm{~mL}$ of D5W in 24 hours with an infusion pump. At what flow rate will the pump deliver?
13. An IV of D5W and $1 / 2$ NS $1,000 \mathrm{~mL}$ was ordered to infuse over 8 hours. Drop factor 15 $\mathrm{gtt} / \mathrm{mL}$. The IV was hung up at 7 am . At 11 am you check the IV, and noticed that 600 mL have infused.
a) Recalculate the rate in $\mathrm{gtt} / \mathrm{min}$ for the remaining solution.
b) Determine the percentage of change in IV rate, and state your course of action.
14. a) Determine the infusion time for an IV of 500 mL NS is to infuse at $60 \mathrm{~mL} / \mathrm{hr}$ and give the answer in hr and min;
b) The IV started at 11PM, at what time would the infusion be completed? State time in traditional (12-hour clock).
c) Express your answer to part (b) in military time (24-hour clock).

PART VI. DOSAGE CALCULATIONS BASED ON WEIGHT AND BSA

1. Esmolol 1.5 g in 250 mL D5W has been ordered at a rate of $100 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ for a client weighing 102.4 kg . Determine the following:
a) dosage in $\mathrm{mcg} / \mathrm{min}$;
b) rate in $\mathrm{mL} / \mathrm{hr}$.
2. Order: Morphine sulfate 7.5 mg subcut q 4 h p.r.n. for a child weighing 84 Lb . Available: Morphine sulfate $15 \mathrm{mg} / \mathrm{mL}$ subcutaneous injection.
The recommended maximum dose for a child is 0.1 to $0.2 \mathrm{mg} / \mathrm{kg} /$ dose.
a) What is the child's weight in kilograms to the nearest tenth?
b) What is the safe dosage range for this child? Round your answer to the nearest hundredths.
c) Is the dosage ordered safe? Justify your answer.
d) How many milliliters will you administer for one dosage?
3. The child's BSA is $0.52 \mathrm{~m}^{2}$. The average child dosage for medication is $15 \mathrm{mg} / \mathrm{m}^{2}$. What will the child's dosage be?
4. The label reads: Antibiotic, Pediatric Patients Age 2 to 6 years: $0.25 \mathrm{mg} / \mathrm{kg} /$ day or 8 mg per square meter of the patient body surface area. Calculate the daily dosage for a 5 -year-old child whose BSA is $0.78 \mathrm{~m}^{2}$.
5. A client with a weight of 187 Lb will receive a heparin infusion:

Heparin 28,000 units in 1,000 mL 0.9% sodium chloride.
Bolus with heparin sodium at 80 units $/ \mathrm{kg}$, then initiate drip at 18 units $/ \mathrm{kg} / \mathrm{hr}$.
(a) Calculate the initial heparin bolus dosage.
(b) Calculate the infusion rate in units $/ \mathrm{hr}$, and determine the rate in $\mathrm{mL} / \mathrm{hr}$ at which you will set the infusion device.

Answer Key

Part I. Arithmetic Review

1. 1.68
2. c) More than 1 tab
3. 13
4. 100 mg

Part II. Conversions

1. a) 17.8 kg ; b) 200 mg ; c) 59.4 Lb ; d) 0.016 mg ; e) 45 mL ; f) 2.5 Oz
2. 5 cups
3. $37^{\circ} \mathrm{C}$
4. 218.2 Lb
5. $100.8^{\circ} \mathrm{F}$
6. $3: 20 \mathrm{am}$
7. 0300
8. 660 mL

Part III. Reading Medication Labels

1. Label (i): a) CIPRO; b) ciprofloxacin hydrochloride/miles; c) tablet; d) $250 \mathrm{mg} / \mathrm{tab}$; e) 100 tablets. Label (ii): a) Cytotec; b) misoprostol; c) tablet; d) $100 \mathrm{mcg} / \mathrm{tab}$; e) 60 tablets. Label (iii): a) no trade name stated; b)Hydromorphone: c) injectable liquid; d) $2 \mathrm{mg} / \mathrm{mL}$; e) 20 mL ; f) Subcutaneous, Intramuscular or slow Intravenous use. Label (iv): a) No trade name stated; b) Diclofenac Sodium; c) $50 \mathrm{mg} / \mathrm{tab}$; d) not safe. It is stated stored with controlled room temperature.
2. Reconstituted with 127 mL water.
3. a) 10 mL single-Dose Vial; b) $1 \mathrm{mg} / 10 \mathrm{~mL}$; c) For IV use only.

Part IV. Dosage Calculations

1. 1 tab
2. 2 tabs
3. a) the " 30 mg tablets " is best to administer; b) 3 tabs; c) the tablet consists of 30 mg of Phenobarbital, the order is 90 mg , so $30 \mathrm{mg} * 3=90 \mathrm{mg}$
4. 10 mL
5. 1 mL
6. 2.4 mL
7. a) 250,000 units $/ \mathrm{mL}$; b) 18.2 mL ; c) 1.2 mL ; d)

8. a) 500,000 units $/ \mathrm{mL}$; b) 33 mL ; c) 1.4 mL ; d)

9. Novolin R U-100: 41 units.

10. Regular insulin: 22 units.

11. 2 mL
12. 0.5 mL

13. 8 mL
14. 0.8 mL
15. 2 tab
16. 0.12 mg
17. Solute: 400 mL , solvent: 800 mL

Part V. Intravenous (IV) Calculations

1. a) D5 and $1 / 2 \mathrm{NS}$; b) 25 g ; c) 2.25 g
2. Dextrose: 50 g ; Sodium Chloride 9 g
3. $20 \mathrm{gtt} / \mathrm{min}$
4. a) 8 hr 20 min ; b) (i) traditional time $6: 20$ am hours, (ii) military time 0620 hours
5. a) $10 \mathrm{gtt} / \mathrm{min}$; b) -29%; c) This percent change is beyond $+/-25 \%$ range; notify a prescriber
6. a) $42 \mathrm{~mL} / \mathrm{hr}$; b) $1680 \mathrm{units} / \mathrm{hr}$
7. a) added 46 mL ; b) $33 \mathrm{~mL} / \mathrm{hr}$
8. $38 \mathrm{~mL} / \mathrm{hr}$
9. a) $72 \mathrm{mg} / \mathrm{hr}$; b) $1200 \mathrm{mcg} / \mathrm{min}$
10. a) 12 hr 30 min ; b) $00: 50 \mathrm{am}$
11. $25 \mathrm{gtt} / \mathrm{min}$
12. $75 \mathrm{~mL} / \mathrm{hr}$
13. a) $25 \mathrm{gtt} / \mathrm{min}$; b) -19%. This percent change is within $+/-25 \%$; change the flow rate without notifying a prescriber.
14. a) 8 hr 20 min ; b) $7: 20 \mathrm{am}$; c) 0720

Part VI. Dosage Calculations Based on Weight and BSA

1. a) $10,240 \mathrm{mcg} / \mathrm{min}$; b) $102.4 \mathrm{~mL} / \mathrm{hr}$
2. a) 38.2 kg ; b) $3.82-7.64 \mathrm{mg} / \mathrm{kg} /$ dose; c) Yes; d) 0.5 mL
3. 7.8 mg
4. 6.24 mg
5. a) 6800 units; b) 1530 units $/ \mathrm{hr}$; $55 \mathrm{~mL} / \mathrm{hr}$
