# CUNY Elementary Algebra Final Exam 

## Problem Sets

November 2012

## For the most up-to-date information on this exam, please visit http://www.cuny.edu/testing

## CUNY Elementary Algebra Final Exam Format:

- 25 multiple choice questions (4 choices each)
- Students will have 100 minutes to complete the exam.
- No calculators will be allowed on the exam.
- The exam will be administered on a computer.


## Test Taking Tips/Strategies:

- Read each question completely and carefully before you begin any calculations.
- Pace yourself so that you don't spend too much time on one question.
- Stay calm and focus on the exam until you are finished.
- Copy down all relevant information from the example on scrap paper including all the formulas that you have memorized. Draw a diagram where needed. Begin solving the problem neatly step by step on the scrap paper. Don't forget to answer all parts of the question.
- Try to solve the problem before looking at the choices. Reread the problem before choosing an answer to make sure you are answering the question that was asked.
- Check your work.
- If you are unable to arrive at a correct answer, look at the choices and use the process of elimination to make an educated guess.
- Make sure you have answered all the questions. Don't leave any questions blank!

Take Sample Final Exams online at http://www.cuny.edu/testing

## Problem Set I

Take Sample Final Exams online at http://www.cuny.edu/testing

1. Simplify. $\sqrt{3}(4-2 \sqrt{6})$
A) $4 \sqrt{3}-6 \sqrt{2}$
B) $2 \sqrt{3}-6 \sqrt{2}$
C) $-2 \sqrt{6}$
D) $4 \sqrt{3}-6$
2. Simplify. $6 \sqrt{2}-\sqrt{12}+5 \sqrt{8}$
A) $16 \sqrt{2}-2 \sqrt{3}$
B) $16 \sqrt{3}-3 \sqrt{2}$
C) $20 \sqrt{2}$
D) $4 \sqrt{2}-2 \sqrt{3}$
3. Multiply. Answer must be in scientific notation. $\left(1.7 \times 10^{2}\right)\left(6.3 \times 10^{5}\right)$
A) $10.71 \times 10^{7}$
B) $10.71 \times 10^{10}$
C) $1.071 \times 10^{8}$
D) $1.071 \times 10^{7}$
4. Simplify and write with positive exponents. $\left(-x^{3} y^{-6} z^{5}\right)\left(8 x^{-3} y z^{4}\right)$
A) $\frac{24 x^{6} z^{9}}{y^{5}}$
B) $-\frac{8 z^{20}}{x^{9} y^{6}}$
C) $\frac{z^{9}}{8 y^{5}}$
D) $-\frac{8 z^{9}}{y^{5}}$

## 5. Translate the sentence into an equation.

"Eight less than three times a number is equal to the sum of a number and four."
A) $8-3 x=x+4$
B) $3 x-8=x+4$
C) $8-3 x=4 x$
D) $3 x-8=3(x+4)$
6. Simplify. $\left(-7 x^{3} y^{2}+4 x y\right)-\left(3 x^{3} y^{2}+2 x y\right)$
A) $-10 x^{6} y^{4}+6 x^{2} y^{2}$
B) $-10 x^{3} y^{2}+6 x y$
C) $-4 x^{6} y^{4}+2 x^{2} y^{2}$
D) $-10 x^{3} y^{2}+2 x y$
7. Multiply. $(4 x-3)\left(2 x^{2}-5 x-4\right)$
A) $8 x^{3}-20 x^{2}-16 x+12$
B) $8 x^{3}-26 x^{2}-31 x+12$
C) $8 x^{3}-26 x^{2}-x+12$
D) $8 x^{2}-5 x+12$
8. Multiply. $(7 x-2)^{2}$
A) $49 x^{2}-28 x+4$
B) $49 x^{2}+4$
C) $14 x^{2}+4$
D) $49 x^{2}-14 x+4$
9. Divide. $\frac{21 x^{3} y^{2}-28 x^{2} y^{2}+7 x y^{2}}{-7 x y^{2}}$
A) $-3 x^{2}+4 x$
B) $-3 x^{2}+4 x-1$
C) $-3 x^{4} y^{4}+4 x^{3} y^{4}-x^{2} y^{4}$
D) $21 x^{3} y^{2}-28 x^{2} y^{2}$
10. Factor Completely. $6 x^{3} y^{2}-24 x z^{2}$
A) $6 x(x y-2 z)^{2}$
B) $6 x\left(x^{2} y^{2}-4 z^{2}\right)$
C) $6\left(x^{3} y^{2}-4 x z^{2}\right)$
D) $6 x(x y+2 z)(x y-2 z)$
11. Which of the following is a factor of the polynomial $4 x^{2}-13 x+10$ ?
A) $x+5$
B) $4 x-2$
C) $4 x+5$
D) $x-2$
12. Which of the following is a factor of the polynomial $8 s x+28 s y-6 t x-21 t y$ ?
A) $4 s-3 t$
B) $2 x-7 y$
C) $2 x+7 t$
D) $4 s+3 t$
13. Factor Completely. $24 s^{2} t-18 s t-15 t$
A) $t\left(24 s^{2}-18 s-15\right)$
B) $3 t(4 s-5)(2 s+1)$
C) $s t(24 s-3)$
D) $3 t(4 s+5)(2 s-1)$
14. Translate and Solve.
"Nine is three times the difference between a number and two."
A) $x=\frac{11}{3}$
B) $x=29$
C) $x=5$
D) $x=\frac{27}{2}$
15. Solve. $-3(x-4)+8=4(2 x-1)-9$
A) $x=\frac{11}{8}$
B) $x=-3$
C) $x=-\frac{11}{9}$
D) $x=3$
16. What is the value of the $x$-coordinate of the solution to the following system of equations?

$$
\begin{gathered}
3 x+y=3 \\
-2 x+2 y=-10
\end{gathered}
$$

A) $x=-3$
B) $x=2$
C) $x=-7$
D) $x=-2$
17. Solve for $t . v=v_{0}+a t$
A) $t=\frac{v-v_{0}}{a}$
B) $t=\frac{v_{0}-v}{a}$
C) $t=v_{0}-v-a$
D) $t=a v-v_{0}$
18. Solve for all values of $\boldsymbol{x} .(2 x+3)(x-8)=0$
A) $x=-3$ or $x=-8$
B) $x=-\frac{3}{2}$ or $x=8$
C) $x=\frac{3}{2}$ or $x=-8$
D) $x=-\frac{2}{3}$ or $x=8$
19. Solve for all values of $\boldsymbol{n} . \quad 5 n^{2}+15 n=0$
A) $n=-3$
B) $n=0$ or $n=-3$
C) $n=3$
D) $n=0$ or $n=3$
20. Solve for all values of $\boldsymbol{x} . \quad 4 x^{2}-25=0$
A) $x=\frac{5}{2}$
B) $x=-\frac{5}{4}$ or $x=\frac{5}{4}$
C) $x=-\frac{5}{2}$ or $x=\frac{5}{2}$
D) $x=-\frac{2}{5}$ or $x=\frac{2}{5}$
21. Olivia runs 10 meters diagonally across a rectangular field that has a width of 6 meters. Find the length of the rectangular field.
A) 12 meters
B) 8 meters
C) 4 meters
D) $\mathbf{1 6}$ meters
22. Solve. $x-5(4 x+8) \geq 3 x-2(x+10)$
A) $x \geq-1$
B) $x \geq 1$
C) $x \leq 1$
D) $x \leq-1$
23. Find the graph of the solution to the inequality $-4(3 x-5)<2(x-11)$.
A)
B)

C)
D)

24. If $f(x)=-3 x^{2}+7 x-5$, find $f(-5)$.
A) -15
B) -115
C) 35
D) -70
25. Find the equation of the line that passes through the points $(-5,-6)$ and $(-7,4)$. Write the equation in slope- intercept form.
A) $y=\frac{1}{6} x-\frac{31}{6}$
B) $y=-\frac{1}{5} x+\frac{13}{5}$
C) $y=-5 x+39$
D) $y=-5 x-31$
26. Find the equation of the vertical line that passes through the point $(-2,5)$.
A) $x=-2$
B) $y=x+5$
C) $y=-\frac{5}{2} x$
D) $y=5$
27. Find the slope and $y$ intercept of the line $7 y-4 x=21$.
A) slope $=-\frac{4}{7}$ and
B) slope $=\frac{4}{7}$ and
C) slope $=\frac{7}{4}$ and
D) slope $=\frac{4}{7}$ and
y intercept $=(0,3)$
y intercept $=(0,21)$

$$
y \text { intercept }=(0,-3)
$$

$$
y \text { intercept }=(0,3)
$$

28. If a car travels 350 miles in 5 hours, at the same speed how long will it take to travel 560 miles?
A) 4 hours
B) 6 hours
C) 8 hours
D) 10 hours
29. You would like to purchase a new car from the dealer listed for $\$ 25,000$. After negotiating, you agree to pay $\$ 20,000$ for the new car. What is the percent decrease?
A) $25 \%$
B) $20 \%$
C) $15 \%$
D) $10 \%$
30. Which of the following is the graph of the equation $9 x-6 y=18$ ?
A)

C)

B)

D)


## Answer Key - Problem Set I

| Question Number | Correct Answer |
| ---: | :--- |
| 1. | A |
| 2. | A |
| 3. | C |
| 4. | D |
| 5. | B |
| 6. | D |
| 7. | C |
| 8. | A |
| 9. | B |
| 10. | D |
| 11. | D |
| 12. | A |
| 13. | B |
| 14. | C |
| 15. | D |
| 16. | B |
| 17. | A |
| 18. | B |
| 19. | B |
| 20. | C |
| 21. | B |
| 22. | D |
| 23. | C |
| 24. | B |
| 25. | D |
| 26. | A |
| 27. | D |
| 28. | C |
| 29. | B |
| 30. | A |
|  |  |
|  |  |

Take Sample Final Exams online at http://www.cuny.edu/testing

## Solution Guide to Problem Set I

1. Simplify. $\sqrt{3}(4-2 \sqrt{6})$

## Solution:

Use the Distributive Property.

$$
\begin{aligned}
& =\sqrt{3} \cdot 4-\sqrt{3} \cdot 2 \sqrt{6} \\
& =4 \sqrt{3}-2 \sqrt{18} \\
& =4 \sqrt{3}-2 \sqrt{9 \cdot 2} \\
& =4 \sqrt{3}-2 \sqrt{9} \cdot \sqrt{2} \\
& =4 \sqrt{3}-2 \cdot 3 \sqrt{2} \\
& =4 \sqrt{3}-6 \sqrt{2}
\end{aligned}
$$

## Choice A

2. Simplify. $6 \sqrt{2}-\sqrt{12}+5 \sqrt{8}$

## Solution:

$=6 \sqrt{2}-\sqrt{4 \cdot 3}+5 \sqrt{4 \cdot 2}$
$=6 \sqrt{2}-\sqrt{4} \cdot \sqrt{3}+5 \cdot \sqrt{4} \cdot \sqrt{2}$
$=6 \sqrt{2}-2 \sqrt{3}+5 \cdot 2 \sqrt{2}$
$=6 \sqrt{2}-2 \sqrt{3}+10 \sqrt{2}$
$=(6+10) \sqrt{2}-2 \sqrt{3}$
$=16 \sqrt{2}-2 \sqrt{3}$

## Choice A

3. Multiply.

Answer must be in scientific notation.
$\left(1.7 \times 10^{2}\right)\left(6.3 \times 10^{5}\right)$

## Solution:

$=(1.7 \cdot 6.3) \times\left(10^{2} \cdot 10^{5}\right)$
$=10.71 \times 10^{2+5}$
$=10.71 \times 10^{7}$
Move the decimal point one place to the left and add 1 to the exponent.
$=1.071 \times 10^{8}$

## Choice C

4. Simplify and write with positive exponents.
$\left(-x^{3} y^{-6} z^{5}\right)\left(8 x^{-3} y z^{4}\right)$

## Solution:

$=(-1 \cdot 8)\left(x^{3} \cdot x^{-3}\right)\left(y^{-6} \cdot y\right)\left(z^{5} \cdot z^{4}\right)$
$=-8 x^{3+(-3)} y^{-6+1} z^{5+4}$
$=-8 x^{0} y^{-5} z^{9}$
Note: If $x \neq 0$, then $x^{0}=1$.
$=-8(1) y^{-5} z^{9}$
$=-8 y^{-5} z^{9}$
$=-\frac{8 z^{9}}{y^{5}}$
Choice D

## 5. Translate the sentence into an equation.

"Eight less than three times a number is equal to the sum of a number and four."

## Solution:

Note: "less than" reverses the terms in the equation Let $x$ be a number.
"three times a number": $3 x$
"Eight less than three times a number": $3 x-8$
"sum of a number and four" : $x+4$
$3 x-8=x+4$

## Choice B

6. Simplify. $\left(-7 x^{3} y^{2}+4 x y\right)-\left(3 x^{3} y^{2}+2 x y\right)$

## Solution:

$=-7 x^{3} y^{2}+4 x y-3 x^{3} y^{2}-2 x y$
$=-7 x^{3} y^{2}-3 x^{3} y^{2}+4 x y-2 x y$
Add coefficients of like terms.
$=(-7-3) x^{3} y^{2}+(4-2) x y$
$=-10 x^{3} y^{2}+2 x y$
Choice D
7. Multiply. $(4 x-3)\left(2 x^{2}-5 x-4\right)$

## Solution:

Use the Distributive Property.
$=4 x \cdot\left(2 x^{2}-5 x-4\right)-3 \cdot\left(2 x^{2}-5 x-4\right)$
$=4 x \cdot 2 x^{2}-4 x \cdot 5 x-4 x \cdot 4-3 \cdot 2 x^{2}+3 \cdot 5 x+3 \cdot 4$
$=8 x^{1+2}-20 x^{1+1}-16 x-6 x^{2}+15 x+12$
$=8 x^{3}-20 x^{2}-16 x-6 x^{2}+15 x+12$
$=8 x^{3}+(-20-6) x^{2}+(-16+15) x+12$
$=8 x^{3}-26 x^{2}-x+12$

## Choice C

8. Multiply. $(7 x-2)^{2}$

## Solution:

Note: $(a-b)^{2}=a^{2}-2 a b+b^{2}$
Let $a=7 x$ and $b=2$
$=(7 x)^{2}-2(7 x)(2)+(2)^{2}$
$=7 x \cdot 7 x-(2 \cdot 7 \cdot 2) x+(2)$
$=49 x^{1+1}-28 x+4$
$=49 x^{2}-28 x+4$

## Choice A

9. Divide. $\frac{21 x^{3} y^{2}-28 x^{2} y^{2}+7 x y^{2}}{-7 x y^{2}}$

## Solution:

Divide each term in the numerator by the denominator.
$=\frac{21 x^{3} y^{2}}{-7 x y^{2}}-\frac{28 x^{2} y^{2}}{-7 x y^{2}}+\frac{7 x y^{2}}{-7 x y^{2}}$
$=-3 x^{3-1} y^{2-2}+4 x^{2-1} y^{2-2}-1 x^{1-1} y^{2-2}$
$=-3 x^{2} y^{0}+4 x y^{0}-1 x^{0} y^{0}$
Note: If $x \neq 0$, then $x^{0}=1$.
$=-3 x^{2}(1)+4 x(1)-1(1)(1)$
$=-3 x^{2}+4 x-1$

## Choice B

10. Factor Completely. $6 x^{3} y^{2}-24 x z^{2}$

## Solution:

Factor the Greatest Common Factor (GCF)
from each term.
$=6 x\left(x^{2} y^{2}-4 z^{2}\right)$
Use the Difference of Two Squares.
$=6 x\left[(x y)^{2}-(2 z)^{2}\right]$
$=6 x[(x y+2 z)(x y-2 z)]$
$=6 x(x y+2 z)(x y-2 z)$

## Choice D

11. Which of the following is a factor of the polynomial $4 x^{2}-13 x+10 ?$

## Solution:

Factor by grouping.
$a \cdot c=(4) \cdot(10)=40$
Find the factors of 40 whose sum is $b=-13$.

$$
(-8) \cdot(-5)=40 \text { and }(-8)+(-5)=-13
$$

Rewrite $-13 x$ as $-8 x-5 x$.
$=4 x^{2}-8 x-5 x+10$
$=\left(4 x^{2}-8 x\right)+(-5 x+10)$
$=4 x(x-2)-5(x-2)$
$=(x-2)(4 x-5)$
The factors are $(x-2)$ and $(4 x-5)$.
Choice D
12. Which of the following is a factor of the polynomial

$$
8 s x+28 s y-6 x t-21 t y ?
$$

## Solution:

Factor by grouping.
$=(8 s x+28 s y)+(-6 x t-21 t y)$
Factor the Greatest Common Factor (GCF) from each set of parentheses.
$=4 s(2 x+7 y)-3 t(2 x+7 y)$
$=(2 x+7 y)(4 s-3 t)$
The factors are $(2 x+7 y)$ and $(4 s-3 t)$.

## Choice A

13. Factor Completely. $24 s^{2} t-18 s t-15 t$

## Solution:

Factor the Greatest Common Factor (GCF)
from each term.
$=3 t\left(8 s^{2}-6 s-5\right)$
Factor by grouping.
$a \cdot c=(8) \cdot(-5)=-40$
Find the factors of -40 whose sum is $b=-6$
$(-10) \cdot(4)=-40$ and $(-10)+(4)=-6$
Rewrite $-6 s$ as $-10 s+4 s$
$=3 t\left[8 s^{2}-10 s+4 s-5\right]$
$=3 t[2 s(4 s-5)+1(4 s-5)]$
$=3 t(4 s-5)(2 s+1)$

## Choice B

14. Translate and Solve.
"Nine is three times the difference between a number and two."

## Solution:

Let $x$ be a number.
9 is 3 times (difference between $x$ and 2)
$9=3 \cdot(x-2)$
$9=3 x-6$
$9+6=3 x-6+6$
$15=3 x \rightarrow \frac{15}{3}=\frac{3 x}{3}$
$5=x$ or $x=5$

## Choice C

15. Solve. $-3(x-4)+8=4(2 x-1)-9$

## Solution:

Simplify both sides of the equation.
$-3 \cdot x-(-3) \cdot 4+8=4 \cdot 2 x-4 \cdot 1-9$
$-3 x+12+8=8 x-4-9$
$-3 x+20=8 x-13$
Isolate the variable $x$.

$$
\begin{aligned}
& -3 x-8 x+20=8 x-8 x-13 \\
& -11 x+20=-13 \\
& -11 x+20-20=-13-20 \\
& -11 x=-33 \rightarrow \frac{-11 x}{-11}=\frac{-33}{-11} \\
& x=3
\end{aligned}
$$

## Choice D

16. What is the value of the $x$-coordinate of the solution to the following system of equations?
(1) $3 x+y=3$
(2) $-2 x+2 y=-10$

## Solution:

Eliminate the $y$ variable.
Multiply equation (1) by -2
$-2(3 x+y=3)$
$-6 x-2 y=-6 \rightarrow$ new equation (1)
Add new equation (1) and equation (2)

$$
\begin{aligned}
& -6 x-2 y=-6 \\
& +-2 x+2 y=-10 \\
& \hline-8 x \quad=-16 \\
& \quad \frac{-8 x}{-8}=\frac{-16}{-8} \rightarrow x=2
\end{aligned}
$$

## Choice B

17. Solve for $t$. $v=v_{0}+a t$

## Solution:

$$
\begin{aligned}
& v-v_{0}=v_{0}-v_{0}+a t \\
& v-v_{0}=a t \\
& \frac{v-v_{0}}{a}=\frac{a t}{a} \\
& \frac{v-v_{0}}{a}=t \text { or } t=\frac{v-v_{0}}{a}
\end{aligned}
$$

## Choice A

18. Solve for all values of $\boldsymbol{x} .(2 x+3)(x-8)=0$

## Solution:

Set each factor equal to zero and solve.

| $2 x+3=0$ | $x-8=0$ |
| :---: | :---: |
| $2 x+3-3=0-3$ | $x-8+8=0+8$ |
| $2 x=-3$ | $x=8$ |
| $\frac{2 x}{2}=\frac{-3}{2}$ |  |
| $x=-\frac{3}{2}$ | $x=8$ |

## Choice B

19. Solve for all values of $n .5 n^{2}+15 n=0$

## Solution:

Factor the Greatest Common Factor (GCF).

$$
5 n(n+3)=0
$$

Set each factor equal to zero and solve.

$$
\begin{array}{r|r}
\hline 5 n=0 & n+3=0 \\
\frac{5 n}{5}=\frac{0}{5} & n+3-3=0 \\
n=0 & n=-3
\end{array}
$$

## Choice B

20. Solve for all values of $\boldsymbol{x} .4 x^{2}-25=0$

## Solution:

Factor using the Difference of Two Squares.

$$
\begin{gathered}
(2 x)^{2}-(5)^{2}=0 \\
(2 x+5)(2 x-5)=0
\end{gathered}
$$

Set each factor equal to zero and solve.

| $2 x+5=0$ | $2 x-5=0$ |
| :---: | :---: |
| $2 x+5-5=0-5$ | $2 x-5+5=0+5$ |
| $2 x=-5$ | $2 x=5$ |
| $\frac{2 x}{2}=\frac{-5}{2}$ | $\frac{2 x}{2}=\frac{5}{2}$ |
| $x=-\frac{5}{2}$ | $x=\frac{5}{2}$ |

## Choice C

21. Olivia runs 10 meters diagonally across a rectangular field that has a width of 6 meters. Find the length of the rectangular field.

## Solution:

Draw a diagram and label the given sides.


Use Pythagorean Theorem to solve the right triangle: $a^{2}+b^{2}=c^{2}$ where $c$ is the hypotenuse.
Let $a=6$, and $c=10$
$6^{2}+b^{2}=10^{2}$
$36+b^{2}=100$
$36-36+b^{2}=100-36$
$b^{2}=64$
$b=\sqrt{64}=8$ meters

## Choice B

22. Solve. $x-5(4 x+8) \geq 3 x-2(x+10)$

## Solution:

$x-5 \cdot 4 x+(-5) \cdot 8 \geq 3 x-2 \cdot x+(-2) \cdot 10$
$x-20 x-40 \geq 3 x-2 x-20$
$-19 x-40 \geq x-20$
$-19 x-x-40 \geq x-x-20$
$-20 x-40 \geq-20$
$-20 x-40+40 \geq-20+40$
$-20 x \geq 20 \rightarrow \frac{-20 x}{-20} \leq \frac{20}{-20}$
Note: Reverse the inequality sign when multiplying or dividing by a negative number.
$x \leq-1$
Choice D
23. Find the graph of the solution to the inequality

$$
-4(3 x-5)<2(x-11)
$$

## Solution:

Solve the inequality.

$$
\begin{aligned}
& -4 \cdot 3 x-(-4) \cdot 5<2 \cdot x-2 \cdot 11 \\
& -12 x+20<2 x-22 \\
& -12 x-2 x+20<2 x-2 x-22 \\
& -14 x+20<-22 \\
& -14 x+20-20<-22-20 \\
& -14 x<-42 \rightarrow \frac{-14 x}{-14}>\frac{-42}{-14}
\end{aligned}
$$

Note: Reverse the inequality sign when multiplying or dividing by a negative number.

$$
x>3
$$

" $x$ is greater than 3 "

## Choice C

24. If $f(x)=-3 x^{2}+7 x-5$, find $f(-5)$.

## Solution:

Substitute -5 for $x$.
$=-3(-5)^{2}+7(-5)-5$
$=-3(25)+7(-5)-5$
$=-75-35-5$
$=-115$

## Choice B

25. Find the equation of the line that passes through the points $(-5,-6)$ and $(-7,4)$. Write the equation in slope intercept form.

## Solution:

Find the slope of the line using
slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\left(x_{1}, y_{1}\right)=(-5,-6)$
$\left(x_{2}, y_{2}\right)=(-7,4)$
$m=\frac{(4)-(-6)}{(-7)-(-5)}=\frac{10}{-2}=-5$

Use one of the given points
$\left(x_{1}, y_{1}\right)=(-5,-6)$, the slope $m=-5$, and the point-slope formula to find the equation of the line: $y-y_{1}=m\left(x-x_{1}\right)$
$y-(-6)=-5(x-(-5))$
$y+6=-5(x+5)$
$y+6=-5 x-25$
$y+6-6=-5 x-25-6$
$y=-5 x-31$

## Choice D

26. Find the equation of the vertical line that passes through the point $(-2,5)$.

## Solution:

The equation of a vertical line passing through the point $(a, b)$ is $x=a$.
$(a, b)=(-2,5) ; a=-2$
$x=-2$

## Choice A

27. Find the slope and $y$-intercept of the line $7 y-4 x=21$.

## Solution:

Write the equation in slope-intercept form, $y=m x+b$, by solving for $y$. The slope of the line is $m$ and the $y$-intercept is $(0, b)$.
$7 y-4 x+4 x=4 x+21$
$7 y=4 x+21$
$y=\frac{4 x}{7}+\frac{21}{7}$
$y=\frac{4}{7} x+3$
$m=\frac{4}{7}$
$y$-intercept: $(0,3)$

## Choice D

28. If a car travels 350 miles in 5 hours, at the same speed how long will it take to travel 560 miles?

## Solution:

Write and solve a proportion using $x$ to represent hours.
$\frac{350 \text { miles }}{5 \text { hours }}=\frac{560 \mathrm{miles}}{x}$
Reduce each ratio, if possible.
$\frac{350}{5}=\frac{560}{x} \rightarrow \frac{70}{1}=\frac{560}{x}$

Cross multiply and solve for $x$.
$70 x=(560) \cdot(1)$
$70 x=560 \rightarrow \frac{70 x}{70}=\frac{560}{70}$
$x=\frac{56 Q}{7 Q}=\frac{56}{7}$
$x=8$ hours

## Choice C

29. You would like to purchase a new car from the dealer listed for $\$ 25,000$. After negotiating, you agree to pay $\$ 20,000$ for the new car. What is the percent decrease?

## Solution:

Percent Decrease $=\frac{(\text { original amount-new amount) }}{\text { original amount }} \cdot 100 \%$

Percent Decrease $=\frac{\$ 25,000-\$ 20,000}{\$ 25,000} \cdot 100 \%$

Percent Decrease $=\frac{\$ 5,000}{\$ 25,000} \cdot 100 \%$

Percent Decrease $=\frac{1}{5} \cdot 100 \%=20 \%$

## Choice B

30. Which of the following is the graph of the equation $9 x-6 y=18$ ?

## Solution:

Find both intercepts of the line:

| $x$-intercept | $y$-intercept |
| :---: | :---: |
| $x$-intercept: let $y=0$ | $y$-intercept: let $x=0$ |
| $9 x-6(0)=18$ | $9(0)-6 y=18$ |
| $9 x-0=18$ | $0-6 y=18$ |
| $9 x=18$ | $-6 y=18$ |
| $\frac{9 x}{9}=\frac{18}{9}$ | $\frac{-6 y}{-6}=\frac{18}{-6}$ |
| $x=2$ | $y=-3$ |
| $x$-intercept: $(2,0)$ | $y$-intercept: $(0,-3)$ |

## Choice A

## Problem Set II

Take Sample Final Exams online at http://www.cuny.edu/testing

1. Simplify. $\frac{(5 \sqrt{24})(3 \sqrt{45})}{\sqrt{6}}$
A) $30 \sqrt{45}$
B) $180 \sqrt{5}$
C) $90 \sqrt{5}$
D) $60 \sqrt{15}$
2. Simplify. $-5 \sqrt{3}-\sqrt{8}+4 \sqrt{18}-2 \sqrt{12}$
A) $3 \sqrt{3}-8 \sqrt{2}$
B) $-4 \sqrt{21}$
C) $5 \sqrt{2}-9 \sqrt{3}$
D) $10 \sqrt{2}-9 \sqrt{3}$
3. Write the number $23,000,000$ in scientific notation.
A) $2.3 \times 10^{7}$
B) $2.3 \times 10^{-7}$
C) $23 \times 10^{6}$
D) $23 \times 10^{-6}$
4. Evaluate. Answer must be in scientific notation. $\frac{\left(24 \times 10^{5}\right)\left(2 \times 10^{3}\right)}{\left(3 \times 10^{-4}\right)}$
A) $1.6 \times 10^{13}$
B) $16 \times 10^{12}$
C) $16 \times 10^{4}$
D) $1.6 \times 10^{5}$
5. Simplify. $\frac{(2 y)^{3}\left(y^{4}\right)}{(8 y)^{2}}$
A) $\frac{y^{6}}{8}$
B) $\frac{3 y^{5}}{8}$
C) $8 y^{5}$
D) $\frac{y^{5}}{8}$
6. Translate the sentence into an equation.
"Twelve subtracted from seven times a number is equal to the square of a number."
A) $12-7 x=2 x$
B) $7 x-12=x^{2}$
C) $12-7 x=x^{2}$
D) $(7-12) x=x^{2}$
7. Simplify. $\left(-5 a^{2}+3 a-6\right)-\left(4 a^{2}+2 a-3\right)$
A) $-a^{2}+a-3$
B) $-9 a^{4}-a^{2}-3$
C) $-9 a^{2}+5 a-3$
D) $-9 a^{2}+a-3$
8. Multiply. $(3 x+2)\left(4 x^{2}-2 x-1\right)$
A) $12 x^{3}+2 x^{2}-7 x-2$
B) $12 x^{3}-2 x-2$
C) $12 x^{3}-14 x^{2}-7 x-2$
D) $12 x^{3}-10 x-2$
9. Divide. $\frac{-24 n^{6}+18 n^{4}+6 n^{2}}{6 n^{2}}$
A) $-4 n^{3}+3 n^{2}$
B) $-4 n^{3}+3 n^{2}+1$
C) $-4 n^{4}+3 n^{2}+1$
D) $-24 n^{4}+3 n^{2}$
10. Factor Completely. $\quad 32 x^{3} y-18 x y^{3}$
A) $2 x y(4 x+3 y)(4 x-3 y)$
B) $2 x y(4 x-3 y)^{2}$
C) $2 x\left(16 x^{2} y-9 y^{3}\right)$
D) $2 y\left(16 x^{3}-9 x y^{2}\right)$
11. Which of the following is a factor of the polynomial $6 z^{2}+17 z-3$ ?
A) $6 z+3$
B) $6 z+1$
C) $z+3$
D) $z-3$
12. Which of the following is a factor of the polynomial $15 x y-10 x q-6 p y+4 p q$ ?
A) $5 x+2 p$
B) $3 y-2 q$
C) $5 x-2 q$
D) $3 y+2 q$
13. Factor Completely. $18 a^{4}-24 a^{3} b+8 a^{2} b^{2}$
A) $2 a^{2}(3 a-2 b)(3 a+2 b)$
B) $2\left(9 a^{4}-12 a^{3} b+4 a^{2} b^{2}\right)$
C) $2\left(9 a^{4}-12 a^{3} b+4 a^{2} b^{2}\right)$
D) $2 a^{2}(3 a-2 b)^{2}$

## 14. Translate and Solve.

"Four times a number is twice the difference between a number and three."
A) $x=-\frac{3}{2}$
B) $x=\frac{3}{2}$
C) $x=-3$
D) $x=3$
15. Solve. $8 x-3(x-4)=2 x-9$
A) $x=-7$
B) $x=1$
C) $x=-\frac{5}{3}$
D) $x=7$
16. What is the value of the $y$-coordinate of the solution to the following system of equations?

$$
\begin{gathered}
-4 x+8 y=10 \\
3 x-4 y=-8
\end{gathered}
$$

A) $y=2$
B) $y=\frac{1}{4}$
C) $y=-4$
D) $y=-\frac{1}{4}$
17. Choose the graph that shows the solution to the system.

$$
\begin{aligned}
& -2 x+y=4 \\
& 4 x+2 y=8
\end{aligned}
$$

A)

B)

C)

D)

18. Solve for $w . \quad P=2 l+2 w$
A) $w=P-l$
B) $w=\frac{P-2 l}{2}$
C) $w=\frac{2 l-P}{2}$
D) $w=l-P$
19. Solve for all values of $\boldsymbol{t} . \quad 6 t^{2}=144$
A) $t=2 \sqrt{6}$
B) $t=0$ or $t=24$
C) $t=-12$ or $t=12$
D) $t=2 \sqrt{6}$ or $t=-2 \sqrt{6}$
20. Solve for all values of $\boldsymbol{x} .8 x^{2}=36 x$
A) $x=\frac{9}{2}$
B) $x=0$ or $x=\frac{9}{2}$
C) $x=-\frac{9}{2}$ or $x=\frac{9}{2}$
D) $x=0$ or $x=\frac{2}{9}$
21. Find the missing side of the right triangle.

A) $b=2 \sqrt{6}$
B) $b=2 \sqrt{2}$
C) $b=6 \sqrt{2}$
D) $b=3 \sqrt{3}$
22. Find the graph of the solution to the inequality $-10 x+5(x-3)>-4(x+2)$.
A)

B)

C)

D)

23. If $f(x)=2 x^{2}-9 x-1$, find $f(-a)$.
A) $f(-a)=2 a^{2}+9 a-1$
B) $f(-a)=-2 a^{2}+9 a-1$
C) $f(-a)=2 a^{2}+8 a$
D) $f(-a)=4 a^{2}+9 a-1$
24. Find the equation of the line that passes through the points $(-2,3)$ and $(1,-9)$. Write the equation in slope intercept form.
A) $y=-2 x-1$
B) $y=6 x+12$
C) $y=-4 x+3$
D) $y=-4 x-5$
25. Find the equation of the horizontal line that passes through the point $(7,-4)$.
A) $y=x-4$
B) $y=-\frac{4}{7} x$
C) $x=7$
D) $y=-4$
26. Find the slope and $y$ intercept of the line $3 x-6 y=48$.
A) slope $=\frac{1}{2}$ and y intercept $=(0,-8)$
B) $\begin{array}{r}\text { slope }=-\frac{1}{2} \text { and } \\ \text { y intercept }=(0,8)\end{array}$
C) slope $=-3$ and
D) slope $=3$ and
y intercept $=(0,48)$
y intercept $=(0,8)$
27. Find the equation of the line that passes through the point $(-3,4)$ and has slope $-\frac{2}{3}$.
A) $y=-\frac{2}{3} x+6$
B) $y=-\frac{2}{3} x+2$
C) $y=-\frac{2}{3} x+4$
D) $y=-\frac{2}{3} x-6$
28. If it takes $\frac{3}{4}$ cup of vegetable oil to make 6 cupcakes, how many cupcakes can be made with 2 cups of vegetable oil?
A) 9 cupcakes
B) 4 cupcakes
C) 16 cupcakes
D) 12 cupcakes
29. Your annual salary is $\$ 55,000$. If you get a $30 \%$ bonus this year, what is your total salary this year?
A) $\$ 165,000$
B) $\$ 58,300$
C) $\$ 71,500$
D) $\$ 85,000$
30. Which of the following is the graph of the equation $-10 x-5 y=20$ ?
A)

C)

B)

D)


## Answer Key - Problem Set II

| Question Number | Correct Answer |
| ---: | :--- |
| 1. | C |
| 2. | D |
| 3. | A |
| 4. | A |
| 5. | D |
| 6. | B |
| 7. | D |
| 8. | A |
| 9. | C |
| 10. | A |
| 11. | C |
| 12. | B |
| 13. | D |
| 14. | C |
| 15. | A |
| 16. | D |
| 17. | A |
| 18. | B |
| 19. | D |
| 20. | B |
| 21. | C |
| 22. | D |
| 23. | A |
| 24. | D |
| 25. | D |
| 26. | A |
| 27. | B |
| 28. | C |
| 29. | C |
| 30. | C |
|  |  |
|  |  |

Take Sample Final Exams online at http://www.cuny.edu/testing

## Solution Guide to Problem Set II

1. Simplify. $\frac{(5 \sqrt{24})(3 \sqrt{45})}{\sqrt{6}}$

## Solution:

$$
\begin{aligned}
& =\frac{(5 \sqrt{4 \cdot 6})(3 \sqrt{9 \cdot 5})}{\sqrt{6}}=\frac{(5 \sqrt{4} \cdot \sqrt{6})(3 \sqrt{9} \cdot \sqrt{5})}{\sqrt{6}} \\
& =\frac{(5 \cdot 2 \cdot \sqrt{6})(3 \cdot 3 \cdot \sqrt{5})}{\sqrt{6}} \\
& =\frac{(10 \cdot \sqrt{6})(9 \cdot \sqrt{5})}{\sqrt{6}}=\frac{(10 \cdot 9) \sqrt{6} \cdot \sqrt{5}}{\sqrt{6}}
\end{aligned}
$$

Rationalize the denominator.
$=\frac{90 \sqrt{30}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{90 \cdot \sqrt{180}}{6}$
$=\frac{90 \sqrt{36 \cdot 5}}{6}=\frac{90 \sqrt{36} \cdot \sqrt{5}}{6}=\frac{90 \cdot 6 \cdot \sqrt{5}}{6}$
$=90 \cdot(1) \cdot \sqrt{5}=90 \sqrt{5}$

## Choice C

2. Simplify. $-5 \sqrt{3}-\sqrt{8}+4 \sqrt{18}-2 \sqrt{12}$

## Solution:

$=-5 \sqrt{3}-\sqrt{4 \cdot 2}+4 \sqrt{9 \cdot 2}-2 \sqrt{4 \cdot 3}$
$=-5 \sqrt{3}-\sqrt{4} \cdot \sqrt{2}+4 \sqrt{9} \cdot \sqrt{2}-2 \sqrt{4} \cdot \sqrt{3}$
$=-5 \sqrt{3}-2 \sqrt{2}+4 \cdot 3 \sqrt{2}-2 \cdot 2 \sqrt{3}$
$=-5 \sqrt{3}-2 \sqrt{2}+12 \sqrt{2}-4 \sqrt{3}$
$=(-2+12) \sqrt{2}+(-5-4) \sqrt{3}$
$=10 \sqrt{2}-9 \sqrt{3}$

## Choice D

3. Write the number $23,000,000$ in scientific notation.

## Solution:

Move the decimal point seven places to the left.
$=2.3 \times 10^{7}$

## Choice A

4. Evaluate. Answer must be in scientific notation.

$$
\frac{\left(24 \times 10^{5}\right)\left(2 \times 10^{3}\right)}{\left(3 \times 10^{-4}\right)}
$$

## Solution:

$=\frac{24 \cdot 2}{3} \times \frac{10^{5} \cdot 10^{3}}{10^{-4}}$
$=16 \times \frac{10^{5+3}}{10^{-4}}$
$=16 \times \frac{10^{8}}{10^{-4}}$
$=16 \times 10^{8-(-4)}=16 \times 10^{8+4}$
$=16 \times 10^{12}$
Move decimal point one place to the left and add 1 to the exponent.
$=1.6 \times 10^{13}$

## Choice A

5. Simplify. $\frac{(2 y)^{3}\left(y^{4}\right)}{(8 y)^{2}}$

## Solution:

$=\frac{2^{3} \cdot y^{3} \cdot y^{4}}{8^{2} \cdot y^{2}}$
$=\frac{8 \cdot y^{3+4}}{64 \cdot y^{2}}=\frac{8 \cdot y^{7}}{64 \cdot y^{2}}$
$=\frac{1 \cdot y^{7-2}}{8}=\frac{y^{5}}{8}$

## Choice D

## 6. Translate the sentence into an equation.

"Twelve subtracted from seven times a number is equal to the square of a number."

## Solution:

Note: "subtracted from" reverses the terms in the equation Let $x$ be a number.
"seven times a number": $7 x$
"Twelve subtracted from seven times a number": $7 x-12$
"square of a number": $x^{2}$
$7 x-12=x^{2}$

## Choice B

7. Simplify. $\left(-5 a^{2}+3 a-6\right)-\left(4 a^{2}+2 a-3\right)$

## Solution:

$=-5 a^{2}+3 a-6-4 a^{2}-2 a+3$
$=-5 a^{2}-4 a^{2}+3 a-2 a-6+3$
Add the coefficients of like terms.
$=(-5-4) a^{2}+(3-2) a+(-6+3)$
$=-9 a^{2}+a-3$

## Choice D

10. Factor Completely. $32 x^{3} y-18 x y^{3}$

## Solution:

Factor the Greatest Common Factor (GCF)
from each term.
$=2 x y\left(16 x^{2}-9 y^{2}\right)$
Use the Difference of Two Squares.
$=2 x y\left[(4 x)^{2}-(3 y)^{2}\right]$
$=2 x y[(4 x+3 y)(4 x-3 y)]$
$=2 x y(4 x+3 y)(4 x-3 y)$
Choice A
11. Which of the following is a factor of the polynomial $6 z^{2}+17 z-3 ?$

## Solution:

Factor by grouping.
$a \cdot c=(6) \cdot(-3)=-18$
Find the factors of -18 whose sum is $b=17$.
$(18) \cdot(-1)=-18$ and $(18)+(-1)=17$
Rewrite $17 z$ as $18 z-1 z$
$=6 z^{2}+18 z-1 z-3$
$=\left(6 z^{2}+18 z\right)+(-1 z-3)$
$=6 z(z+3)-1(z+3)$
$=(z+3)(6 z-1)$
The factors are $(z+3)$ and $(6 z-1)$.

## Choice C

12. Which of the following is a factor of the polynomial
$15 x y-10 x q-6 p y+4 p q ?$

## Solution:

Factor by grouping.
$=(15 x y-10 x q)+(-6 p y+4 p q)$
Factor the Greatest Common Factor (GCF) from each set of parentheses.
$=5 x(3 y-2 q)-2 p(3 y-2 q)$
$=(3 y-2 q)(5 x-2 p)$
The factors are $(3 y-2 q)$ and $(5 x-2 p)$.

## Choice B

13. Factor Completely. $18 a^{4}-24 a^{3} b+8 a^{2} b^{2}$

## Solution:

Factor the Greatest Common Factor (GCF) from each term.
$=2 a^{2}\left(9 a^{2}-12 a b+4 b^{2}\right)$
Note: $(x-y)^{2}=x^{2}-2 x y+y^{2}$
$=2 a^{2}\left[(3 a)^{2}-2(3 a)(2 b)+(2 b)^{2}\right]$
Let $x=3 a \quad$ Let $y=2 b$
$=2 a^{2}(3 a-2 b)^{2}$
Choice D
14. Translate and Solve.
"Four times a number is twice the difference between the number and three."

## Solution:

Let $x$ be a number.
$4 \cdot x$ is 2 (difference between $x$ and 3 )
$4 x=2(x-3)$
$4 x=2 \cdot x-2 \cdot 3$
$4 x=2 x-6$
$4 x-2 x=2 x-2 x-6$
$2 x=-6 \rightarrow \frac{2 x}{2}=\frac{-6}{2}$
$x=-3$
Choice C
15. Solve. $8 x-3(x-4)=2 x-9$

## Solution:

Simplify both sides of the equation.
$8 x-3 \cdot x+(-3) \cdot(-4)=2 x-9$
$8 x-3 x+12=2 x-9$
$5 x+12=2 x-9$
Isolate the variable $x$.
$5 x-2 x+12=2 x-2 x-9$
$3 x+12=-9$
$3 x+12-12=-9-12$
$3 x=-21 \rightarrow \frac{3 x}{3}=\frac{-21}{3}$
$x=-7$

## Choice A

16. What is the value of the $y$-coordinate of the solution to the following system of equations?
(1) $-4 x+8 y=10$
(2)

$$
3 x-4 y=-8
$$

## Solution:

Eliminate the $x$ variable.
Multiply equation (1) by 3 and equation (2) by 4
$3(-4 x+8 y=10)$
$-12 x+24 y=30 \rightarrow$ new equation (1)
$4(3 x-4 y=-8)$
$12 x-16 y=-32 \rightarrow$ new equation (2)
Add the new equations (1) and (2)

$$
\begin{gathered}
-12 x+24 y=30 \\
+\quad 12 x-16 y=-32 \\
\hline 8 y=-2 \\
\frac{8 y}{8}=\frac{-2}{8} \rightarrow y=-\frac{1}{4}
\end{gathered}
$$

## Choice D

17. Choose the graph that shows the solution to the system.

$$
\begin{array}{lr}
\text { Line 1: } & -2 x+y=4 \\
\text { Line 2: } & 4 x+2 y=8
\end{array}
$$

## Solution:

Graph both equations on the same coordinate system.

| Line 1 | Line 2 |
| :--- | :--- |
| $-2 x+y=4$ | $4 x+2 y=8$ |
| $y$-intercept : let $x=0$ | $y$-intercept: let $x=0$ |
| $-2(0)+y=4$ | $4(0)+2 y=8$ |
|  | $\frac{2 y}{2}=\frac{8}{2}$ |
| $y=4$ | $y=4$ |
| $y$-intercept: $(0,4)$ | $y$-intercept: $(0,4)$ |
| $x$-intercept : Let $y=0$ | $x$-intercept: Let $y=0$ |
| $-2 x+0=4$ | $4 x+2(0)=8$ |
| $\frac{-2 x}{-2}=\frac{4 x}{-2}$ | $\frac{8}{4}=\frac{8}{4}$ |
| $x=-2$ | $x=2$ |
| $x$-intercept: $(-2,0)$ | $x$-intercept: $(2,0)$ |
| $\frac{\text { Points on Line 2: }}{(0,4) \text { and }(2,0)}$ |  |
| $(0,4)$ and $(-2,0)$ | $($ ine 1: |

## Choice A

19. Solve for all values of $t$. $6 t^{2}=144$

Solution:
$\frac{6 t^{2}}{6}=\frac{144}{6}$
$t^{2}=24$
Take the square root of both sides of the equation.
$\sqrt{t^{2}}=\sqrt{24}$
$t= \pm \sqrt{24}$
$t= \pm \sqrt{4 \cdot 6}$
$t= \pm \sqrt{4} \cdot \sqrt{6}$
$t= \pm 2 \sqrt{6}$
$t=2 \sqrt{6}$ or $t=-2 \sqrt{6}$

## Choice D

$\frac{P-2 l}{2}=w \quad$ or $\quad w=\frac{P-2 l}{2}$

## Choice B

## Solution:

$P-2 l=2 l-2 l+2 w$
$P-2 l=2 w$
$\frac{P-2 l}{2}=\frac{2 w}{2}$
20. Solve for all values of $\boldsymbol{x} . \quad 8 x^{2}=36 x$

## Solution:

Set the equation equal to zero: $8 x^{2}-36 x=0$
Factor the Greatest Common Factor.

$$
4 x(2 x-9)=0
$$

Set each factor equal to zero and solve.

$$
\begin{array}{c|r}
4 x=0 & 2 x-9=0 \\
\frac{4 x}{4}=\frac{0}{4} & 2 x-9+9=0+9 \\
x=0 & 2 x=9 \\
\frac{2 x}{2}=\frac{9}{2} \\
x=\frac{9}{2}
\end{array}
$$

## Choice B

21. Find the missing side of the right triangle.


## Solution:

Use Pythagorean Theorem to solve the right triangle: $a^{2}+b^{2}=c^{2}$ where c is the hypotenuse.
Let $a=7$ and $c=11$
$7^{2}+b^{2}=11^{2}$
$49+b^{2}=121$
$49-49+b^{2}=121-49$
$b^{2}=72$
$b=\sqrt{72}=\sqrt{36 \cdot 2}=\sqrt{36} \cdot \sqrt{2}=6 \sqrt{2}$

## Choice C

22. Find the graph of the solution to the inequality $-10 x+5(x-3)>-4(x+2)$.

## Solution:

Solve the inequality.
$-10 x+5 \cdot x-5 \cdot 3>-4 \cdot x+(-4) \cdot 2$
$-10 x+5 x-15>-4 x-8$
$-5 x-15>-4 x-8$
$-5 x+4 x-15>-4 x+4 x-8$
$-1 x-15>-8$
$-1 x-15+15>-8+15$
$-1 x>7 \rightarrow \frac{-1 x}{-1}<\frac{7}{-1}$
$x<-7$
Note: Reverse the inequality sign when multiplying or dividing by a negative number.
" $x$ is less than -7 "

## Choice D

23. If $f(x)=2 x^{2}-9 x-1$, find $f(-a)$

## Solution:

Substitute $-a$ for $x$.
$=2(-a)^{2}-9(-a)-1$
$=2(-a)(-a)-9(-a)-1$
$=2 a^{2}+9 a-1$

## Choice A

24. Find the equation of the line that passes through the points $(-2,3)$ and $(1,-9)$. Write the equation in slope-intercept form.

## Solution:

Find the slope of the line using
slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\left(x_{1}, y_{1}\right)=(-2,3)$
$\left(x_{2}, y_{2}\right)=(1,-9)$
$m=\frac{(-9)-(3)}{(1)-(-2)}=\frac{-12}{3}=-4$

Let $\left(x_{1}, y_{1}\right)=(-2,3)$ and use the point-slope formula to find the equation of the line: $y-y_{1}=m\left(x-x_{1}\right)$
$y-3=-4(x-(-2))$
$y-3=-4(x+2)$
$y-3=-4 x-8$
$y-3+3=-4 x-8+3$
$y=-4 x-5$

## Choice D

25. Find the equation of the horizontal line that passes through the point $(7,-4)$.

## Solution:

The equation of a horizontal line passing through a point $(a, b)$ is $y=b$.
$(a, b)=(7,-4) ; b=-4$
$y=-4$
Choice D
26. Find the slope and $y$-intercept of the line $3 x-6 y=48$.

## Solution:

Write the equation in slope-intercept form, $y=m x+b$, by solving for $y$. The slope of the line is $m$ and the $y$-intercept is $(0, b)$
$3 x-3 x-6 y=-3 x+48$
$-6 y=-3 x+48$
$y=\frac{-3 x}{-6}+\frac{48}{-6} \longrightarrow y=\frac{1}{2} x-8$
$m=\frac{1}{2}$ and $y$-intercept: $(0,-8)$

## Choice A

27. Find the equation of the line that passes
through the point $(-3,4)$ and has slope $-\frac{2}{3}$.

## Solution:

Use the point-slope formula to find the equation of the line: $y-y_{1}=m\left(x-x_{1}\right)$
Let $\left(x_{1}, y_{1}\right)=(-3,4)$ and $m=-\frac{2}{3}$
$y-4=-\frac{2}{3}(x-(-3))$
$y-4=-\frac{2}{3}(x+3)$
$y-4=-\frac{2}{3} x+\left(-\frac{2}{3}\right) \cdot 3$
$y-4=-\frac{2}{3} x-2$
$y-4+4=-\frac{2}{3} x-2+4$
$y=-\frac{2}{3} x+2$

## Choice B

28. If it takes $\frac{3}{4}$ cup of vegetable oil to make 6 cupcakes, how many cupcakes can be made with 2 cups of vegetable oil?

## Solution:

Write and solve a proportion using $x$ to represent the number of cupcakes.
$\frac{\frac{3}{4} \text { cup of oil }}{6 \text { cupcakes }}=\frac{2 \text { cups of oil }}{x}$
Cross multiply and solve for $x$.
$\frac{3}{4} x=(2) \cdot(6) \rightarrow \frac{3}{4} x=12$
Multiply both sides of the equation by the reciprocal of the coefficient of $x: \quad \frac{4}{3} \cdot \frac{3}{4} x=\frac{4}{3} \cdot 12$
$x=16$ cupcakes

## Choice C

29 Your annual salary is \$55,000. If you get a 30\% bonus this year, what is your total salary this year?

## Solution:

Total Salary = Annual Salary + Bonus
Bonus $=30 \%$ of $\$ 55,000$
Bonus $=\frac{3 \not 0}{100} \cdot \$ 55,000=\frac{3}{16} \cdot \$ 55,00 \not 0=3 \cdot \$ 5,500$
Bonus $=\$ 16,500$
Total Salary $=\$ 55,000+\$ 16,500$
Total Salary $=\$ 71,500$
Choice C
30. Which of the following is the graph of the equation $-10 x-5 y=20 ?$

## Solution:

Find both intercepts of the line:

| $x$-intercept | $y$-intercept |
| :---: | :---: |
| $x$-intercept: let $y=0$ | $y$-intercept: let $x=0$ |
| $-10 x-5(0)=20$ | $-10(0)-5 y=20$ |
| $-10 x-0=20$ | $0-5 y=20$ |
| $-10 x=20$ | $-5 y=20$ |
| $\frac{-10 x}{-10}=\frac{20}{-10}$ | $\frac{-5 y}{-5}=\frac{20}{-5}$ |
| $x=-2$ | $y=-4$ |
| $x$-intercept: $(-2,0)$ | $y$-intercept: $(0,-4)$ |

## Choice C

